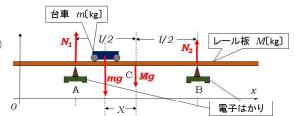
【実験】剛体のつりあい(実験書・データ)

【目的】図のような実験装置を作り、剛体において、回転運動のつりあい(モーメントのつり

あい)と並進運動のつりあい (水平鉛直方向のつり あい)が成立していることを検証する。


【準備物】台車(おもり約 600g),レール付き板(90cm),カブセ,両面テープ付きメジャー,円形ウレタンマット,三角形の木材,台所用電子はかり(2kg用)

【理論】レール板の質量 M, 台車の質量を m, 板の重心の位置を C として, 左右に 1/2 離れた位置にあ

る支点 A,B で板を支え,C 点から A 側に X だけ離れた位置に質量 m の台車を乗せる。このとき A 、B で受ける抗力を N_i 、 N_2 とする次の 2 式が成立する。

- ① Xの値に関係なく、鉛直方向のつりあい
- ②支点 A を中心として、モーメントのつりあい
- 〔(イ) $N_2l = mgX$ (l/2 X) + Mg X (l/2)〕・・・② すなわち、 N_2 は Xの関数として
- 〔(ウ) $N_2 = (1/2) \times (m + M)g mg(X/l)$ 〕 …③ で表される。

【実験の方法】

1 実験装置 板に台車の車輪幅の幅でカブセをレールとして貼り、台上を台車が安定して動 くようにする。円形マット上に三角形の木材を貼り、電子はかりの上に置いて線でレールを支 えるように水平に置く。

2 実験方法

- ① レール付き台の質量 M [kg] と台車の質量 m [kg] を測定する。
- ② 板の中心が支点 A, B の中点となるよう (N_i 、 N_2 の大きさが等しくなる) レール板を載せる。同様にして台車も A, B の中点 C に乗せる。
- ③ 台車を中点 C から 5cm ずつずらしながら、 N_1 、 N_2 の値を測定する。
- ④ *l*の値を変えて,式①,③が成立するか検証する。

【実験結果】

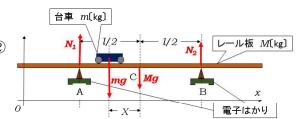
(2)

① M = (0.383) kg, m = (0.612) kg, l = (0.2, 0.3, 0.4) m について実験した。

		l=0.4			l=0.3			l=0.2	
X(m)	N_I	N_2	$N_1 + N_2$	N_I	N_2	$N_1 + N_2$	N_I	N_2	$N_1 + N_2$
0.000	0.497	0.497	0.994	0.498	0.496	0.994	0.496	0.498	0.994
0.050	0.573	0.421	0.994	0.600	0.395	0.995	0.647	0.346	0.993
0.100	0.652	0.341	0.993	0.706	0.288	0.994	0.802	0.191	0.993
0.150	0.727	0.266	0.993	0.803	0.191	0.994	0.953	0.041	0.994
0.160							0.986	0.007	0.993
0.200	0.804	0.190	0.994	0.908	0.087	0.995			
0.240				0.988	0.005	0.993			
0.250	0.877	0.117	0.994				※ 抗力の単	単位はkgW	
0.300	0.956	0.037	0.993						
0.322	0.988	0.005	0.993						

【考察】

- ①鉛直方向のつりあいは成立しているといえるか。 N_1, N_2, N_1+N_2-X グラフから考察する
- ②モーメントのつりあいは成立していると言えるか。 $N_2 X$ グラフから考察する。
- ③ X が大きくなると、レール板は傾く。③式から推定できる傾くときの X の値と実験結果を比較せよ。


講座()	()	年	()	組	()	席	名ī	前					共同実験者			
()月	()	日	()	曜	()	限		温 (()	$^{\circ}\! C$	気圧	() hPa	湿度	() %

【実験】剛体のつりあい(レポート・データ)

【目的】図のような実験装置を作り、剛体において、回転運動のつりあい(モーメントのつりあい)と並進運動のつりあい(水平鉛直方向のつりあい)が成立していることを検証せよ。

【理論】レール板の質量 M, 台車の質量を m, 板の重心の位置を C として, 左右に U/2 離れた位置にある支点 A, B で板を支え, C 点から A 側に X だけ離れた位置に質量 m の台車を乗せる。このとき A, B で受ける抗力を N, N とすると次の 2 式が成立する。

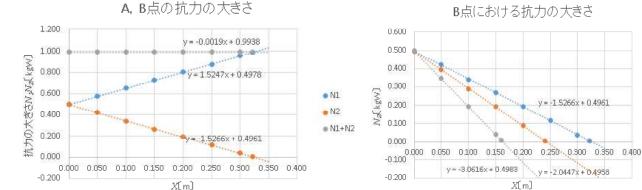
- ① Xの値に関係なく、鉛直方向のつりあい
- $[(7) \quad N_1 + N_2 = (M + m)g \quad] \quad \cdots \quad \boxed{)}$
- ②支点 A を中心として、モーメントのつりあい
- 〔(イ) $N_2l = mgX$ (l/2 X) + Mg X (l/2)〕・・・② すなわち, N_2 は X の関数として
- 〔(ウ) $N_2 = (1/2) \times (m + M)g mg(X/l)$ 〕 …③ で表される。

■ I=0.4

i=0:3

I=0.2

【実験結果】


(2)

① M=(0.383) kg, m=(0.612) kg, l=(0.2,0.3,0.4) m について実験した。

		l=0.4			l=0.3			l=0.2	
X(m)	N_I	N_2	$N_1 + N_2$	N_I	N_2	$N_1 + N_2$	N_I	N_2	$N_1 + N_2$
0.000	0.497	0.497	0.994	0.498	0.496	0.994	0.496	0.498	0.994
0.050	0.573	0.421	0.994	0.600	0.395	0.995	0.647	0.346	0.993
0.100	0.652	0.341	0.993	0.706	0.288	0.994	0.802	0.191	0.993
0.150	0.727	0.266	0.993	0.803	0.191	0.994	0.953	0.041	0.994
0.160							0.986	0.007	0.993
0.200	0.804	0.190	0.994	0.908	0.087	0.995			
0.240				0.988	0.005	0.993			
0.250	0.877	0.117	0.994				※ 抗力の単	単位はkgW	
0.300	0.956	0.037	0.993						
0.322	0.988	0.005	0.993						

【考察】

していると言える。

- ① Xの値に関係なく, $N_1+N_2=0.994$ となっており,M+m=0.995 と良く一致している。② l=0.2,l=0.3,l=0.4 に対する y 切片は 0.498,0.496,0.496 となっており (1/2)(M+m)=0.498 と良く一致し,直線の傾き -3.06,-2.04,-1.53 も③式の-(m/l)=-3.06,-2.04,-1.53 と良く一致する。以上のことから鉛直方向のつりあいとモーメントのつりあいは成立
- ③ x切片は, $N_2 = 0$, すなわち板がひっくり返ることを示しており, グラフの直線を外挿すると, 約 32.6cm, 24.3cm, 16.2cm となり, 実際その付近でひっくり返ることが確認できた。

講座() ()	年()組() 席 名前	共同実験者	
() 月	() 日	()曜()	限 気温()℃	気圧() hPa 湿度() %

【実験】剛体のつりあい(実験書・データ)

【目的】図のような実験装置を作り、剛体において、回転運動のつりあい(モーメントのつり

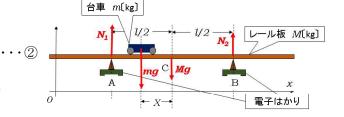
あい)と並進運動のつりあい(水平鉛直方向のつり あい)が成立していることを検証する。

【準備物】台車(おもり約 600g),レール付き板(90cm),カブセ,両面テープ付きメジャー,円形ウレタンマット,三角形の木材,台所用電子はかり(2kg用)

【理論】レール板の質量 M, 台車の質量を m, 板の重心の位置を C として、左右に U2 離れた位置にあ

る支点 A,B で板を支え,C 点から A 側に X だけ離れた位置に質量 m の台車を乗せる。このとき A,B で受ける抗力を N_i , N_i とする次の 2 式が成立する。

① Xの値に関係なく、鉛直方向のつりあい


〔 (ア)

] · · · (1)

②支点 A を中心として、モーメントのつりあい

すなわち, N_2 はXの関数として

〔(ウ) で表される。) …3

【実験の方法】

1 実験装置 板に台車の車輪幅の幅でカブセをレールとして貼り、台上を台車が安定して動くようにする。円形マット上に三角形の木材を貼り、電子はかりの上に置いて線でレールを支えるように水平に置く。

2 実験方法

- ① レール付き台の質量 M [kg] と台車の質量 m [kg] を測定する。
- ② 板の中心が支点 A, B の中点となるよう (N_i 、 N_2 の大きさが等しくなる) レール板を載せる。同様にして台車も A, B の中点 C に乗せる。
- ③ 台車を中点 C から 5cm ずつずらしながら、N₁、N₂の値を測定する。
- ④ *l*の値を変えて,式①,③が成立するか検証する。

【実験結果】

1	M = ()	kg, m =	() kg	l = ()について実験した。		
2	<i>l</i> (m)	l = (l = (l = (
	<i>X</i> [m]	N_1	N_2	$N_1 + N_2$	N_1	N_2	$N_1 + N_2$	N_1	N_2	$N_1 + N_2$
	0.00									
	0.05									
	0.10									
	0.15									
	0.20									
	0.25									
	0.30									
	0.35									
7 :	长海【				•				•	

【老妪】

- ①鉛直方向のつりあいは成立しているといえるか。 N_1, N_2, N_1+N_2-X グラフから考察する
- ②モーメントのつりあいは成立していると言えるか。 № X グラフから考察する。
- ③ X が大きくなると、レール板は傾く。③式から推定できる傾くときの X の値と実験結果を比較せよ。

講座() ())年()	組()席名前	共同実験者	
()月	() 目	() 曜	() 限 気温(%

【実験】剛体のつりあい (レポート)

【目的】図のような実験装置を作り、剛体において、回転運動のつりあい(モーメントのつりあい)と並進運動のつりあい(水平鉛直方向のつりあい)が成立していることを検証せよ。

【理論】レール板の質量 M,台車の質量を m,板の重心の位置を C として,左右に U2 離れた位置にある支点 A,B で板を支え, C 点から A 側に X だけ離れた位置に質量 m の台車を乗せる。このとき A,B で受ける抗力を N₁,N₂ とすると次の 2 式が成立する。

① Xの値に関係なく、鉛直方向のつりあい (7) ② 支点 A を中心として、モーメントのつりあい (4) 3 ・・・② すなわち、 N_2 は X の関数として (0) 3 ・・・③ で表される。

【実験結果】

1 =	夫腴柏禾										
1	M = ()	kg, m =	= () kg,	l = ()mについて実験した。			
2	<i>l</i> (m)	1	l = (l = (l = (
	<i>X</i> (m)	N_1	N_2	$N_1 + N_2$	N_1	N_2	$N_1 + N_2$	N_1	N_2	$N_1 + N_2$	
	0.00										
	0.05										
	0.10										
	0.15										
	0.20										
	0.25										
	0.30									[
	0.35]	

【考察】

講座() ()	年()組(() 席 名前	共同実験者	
()月	() 目	()曜()	限 気温 ()℃	気圧() hPa 湿度() %